If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18a^2+4a=0
a = 18; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·18·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*18}=\frac{-8}{36} =-2/9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*18}=\frac{0}{36} =0 $
| 22+z=35 | | 17=3(v+3)-7v | | 4x-72+27=108-60x | | 4n^2-23=-3n^2 | | 2(5n+6)=16 | | 2−8−3x =11 | | 12x-21=63 | | (x+5)2-6/2=8 | | v+2,300=-500 | | 5x-39=7(x-5)-2x | | 23=-7y+2(y-6) | | (x+8)=(6x+58) | | 45°+5=x | | x/25=4.4 | | d−7=6 | | 1.2=3(q+9.9)-8.1 | | 6=4(x+6)-7x | | 3c-5=-48-40c | | |x+2|+3=3 | | 8(v-1)=3v+22 | | -9=6u+3(u-2) | | 16=-12-4(5+2x) | | 286=-8n-5(7n+3) | | –3(q−7)=–6 | | 5(x+5)=5x+10 | | 9(3x+6)=18x+3 | | (x)=x^2+3x=8 | | 9/u=12/16 | | 2p+2=3p+9 | | 19=-7w+4(w+7) | | 6x+10=9x+5 | | -23=13w+2w+22 |